Multimodal Pattern Classifiers with Feedback of Class Memberships
نویسندگان
چکیده
Feedback of class memberships is incorporated into multimodal pattern classifiers and their unsupervised learning algorithm is presented. Classification decision at low levels is revised by the feedback information which also enables the reconstruction of patterns at low levels. The effects of the feedback are examined for the McGurk effect by using a simple model. key words: multimodal pattern classifier, feedback, McGurk effect
منابع مشابه
Context-sensitive intra-class clustering
This paper describes a new semi-supervised learning algorithm for intra-class clustering (ICC). ICC partitions each class into sub-classes in order to minimize overlap across clusters from different classes. This is achieved by allowing partitioning of a certain class to be assisted by data points from other classes in a context-dependent fashion. The result is that overlap across sub-classes (...
متن کاملFixed and Trained Combiners for Fusion of Imbalanced Pattern Classifiers
In the past decade, several rules for fusion of pattern classifiers’ outputs have been proposed. Although imbalanced classifiers, that is, classifiers exhibiting very different accuracy, are used in many practical applications (e.g., multimodal biometrics for personal identity verification), the conditions of classifiers’ imbalance under which a given rule can significantly outperform another o...
متن کاملAn adaptive classification method for multimedia retrieval
Relevance feedback can effectively improve the performance of content-based multimedia retrieval systems. To be effective, a relevance feedback approach must be able to efficiently capture the user’s query concept from a very limited number of training samples. To address this issue, we propose a novel adaptive classification method using random forests, which is a machine learning algorithm wi...
متن کاملA research on classification performance of fuzzy classifiers based on fuzzy set theory
Due to the complexities of objects and the vagueness of the human mind, it has attracted considerable attention from researchers studying fuzzy classification algorithms. In this paper, we propose a concept of fuzzy relative entropy to measure the divergence between two fuzzy sets. Applying fuzzy relative entropy, we prove the conclusion that patterns with high fuzziness are close to the classi...
متن کاملIeee Transactions on Pattern Analysis and Machine Intelligence
In the above correspondencel a maximum likelihood method is proposed for "estimating" class memberships and underlying statistical parameters, within the context of distribution mixtures. In the present comment it is pointed out that biases are incurred in parameter estimation, that the class memberships and parameters are conceptually different, and therefore that the so-called standard mixtur...
متن کامل